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Simulating the Langevin force by simple noise in nuclear one-body dynamics
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For the purpose of addressing catastrophic phenomena in nuclear dynamics, we explore the possi-
bility of simulating the stochastic part of the collision integral in the Boltzmann-Langevin model by
the numerical noise associated with the finite number of test particles in the ordinary Boltzmann-
Uehling-Uhlenbeck (BUU) treatment. Considering idealized two-dimensional matter, for which it is
practical to simulate the Boltzmann-Langevin equation directly, we demonstrate that the number of
test particles per nucleon can be adjusted so that the corresponding BUU calculation yields a good
reproduction of the spontaneous clusterization occurring inside the spinodal region. This approxi-
mate method may therefore provide a relatively easy way to introduce meaningful fluctuations in

simulations of unstable nuclear dynamics.
PACS number(s): 25.70.Mn, 47.20.—k

I. INTRODUCTION

Intense experimental and theoretical efforts are cur-
rently being directed at understanding the mecha-
nisms responsible for the observed production of com-
plex fragments in heavy-ion collisions. In recent
years, intermediate-energy heavy-ion collisions have been
studied extensively with Boltzmann-Uehling-Uhlenbeck-
(BUU) type models, in which the collisionless Vlasov
equation for the reduced one-body phase-space density
f(r,p) is augmented by a Pauli-blocked Boltzmann colli-
sion term of the Uehling-Uhlenbeck form [1]. The result-
ing BUU equation describes the average one-body density
and is suited for the description of one-body observables,
such as inclusive particle spectra. Models of this class
have been quite successful in describing the structure of
the equilibrated primary sources formed during the first
stage of strongly damped and (incomplete) fusion reac-
tions [2].

However, this mean-trajectory approach cannot pro-
vide a description of phenomena exhibiting large fluctu-
ations or instabilities, such as multifragmentation pro-
cesses. In such cases, a fully dynamical picture is essen-
tial for predicting particular space geometries in fragment
production which should be ultimately related to funda-
mental properties of nuclear interactions in the nuclear
medium. Thus there is a clear need for extending the
usual mean-trajectory transport models so as to include
fluctuations.

Generally speaking, in order to describe the forma-
tion of many fragments one should have to solve the full
many-body problem, which is impractical. However, al-
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ternative avenues considering ensembles of one-body den-
sities have been investigated [3-8]. These approaches
are equivalent to the so-called Boltzmann-Langevin (BL)
model in which the stochastic part of the two-body inter-
action is added to the mean BUU evolution. In particu-
lar, using an exact lattice simulation of the BL equation,
it was shown [9] that in presence of instabilities, the fluc-
tuations coming from the stochastic part of the collision
integral are propagated and amplified by the mean field,
leading finally to the formation of clusters. Up to now
this approach has been applied only to an idealized two-
dimensional system [9], and it appears to be unfeasible
to treat a three-dimensional scenario, such as a nuclear
collision, because of the large amount of computational
effort required.

We have therefore investigated the possibility of re-
placing the (usually complicated) physical fluctuations
by a simpler noise. The main idea is that the dynam-
ics of very unstable systems may be less sensitive to the
particular nature of the fluctuations, because the most
unstable modes will quickly dominate. Specifically, we
study the possibility of replacing the physical fluctua-
tions arising from the collision integral by the numerical
noise present when the ordinary BUU model is solved
by the test-particle method, as is most commonly done.
From a practical point of view, such a simplified approach
would allow us to perform approximative calculations for
realistic three-dimensional processes.

II. BOLTZMANN-LANGEVIN MODEL

The Boltzmann-Langevin equation can be written in
compact form as

f= L =1 =1+,
where f(r,p,t) is the one-body phase-space density. On
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the left-hand side, H[f](r,p) is the self-consistent effec-
tive single-particle Hamiltonian governing the collision-
less Vlasov evolution. On the right-hand side, I[f] de-
notes the effect of the residual two-body collisions, which
can be decomposed into an average effect I[f], and the
fluctuating part 6I[f]. The standard BUU treatment re-
tains only the average term I[f] and therefore produces a
single dynamical trajectory for f(r,p). The fluctuating
collision term 6I[f] acts like a random “kick”on the one-
body density and may therefore produce branchings of
the dynamics, resulting in a bundle of different histories.

The physical origin of the fluctuations can be under-
stood as follows [8]: The actual number A of elementary
collisions has a Poisson distribution characterized by its
mean value N and so has the variance 0%, = N. The
average part of the collision integral, I [f], expresses the
evolution corresponding to putting N = N for all such
elementary processes, while the fluctuating part accounts
for the stochastic remainder N = N — N.

In order to gain insight into the growth of fluctuations,
we start from linear response theory, which is valid for
small fluctuations and therefore is well suited for describ-
ing the early evolution of the system. Let us denote by v
a particular unstable mode of the BUU dynamics, and let
its associated imaginary energy be E, = ihi/t,. Looking
at the linear response to the Boltzmann-Langevin evolu-
tion, it is possible to demonstrate [10] that early on the
average density fluctuation o2 in the unstable mode v

satisfies an equation of motion of the form

d 2
E(Ts N2D,j+t—0'u ’ (2)

where D, is the source term arising from the stochastic
nature of the collision integral. It can be expressed as
[10]

drdp dr’dp’ "
2D, =/—h—2—/ —7 F,(r,p) Fi(r',p")

xa(r,p;r’,p') , (3)
where a(r, p; ', p’) = (8/6t)(6f (r, p)6f(r', P))e=o is the
early growth rate of the correlation function and F,(r, p)
is the eigenmode associated with the unstable mode.

It follows that the fluctuations of the mode v exhibit
the following behavior in time:

Uf(t) ~ Dutu(ezt/tu -1)+ 0.3(0)6%/15./ ) (4)

where ¢2(0) is the initial fluctuation. This result shows
that the terms D,t, and 02(0) play similar roles in the
evolution. Therefore, it may be possible to replace the
physical source term D, by a suitable initial noise o2(0)
determined by the relation

02(0) = D,t,, . (5)

This is the idea that we will now test in a simplified
scenario.

I1II. TEST IN AN IDEALIZED SYSTEM

In order to make a first quantitative test of the idea
described above, we have considered a gas of fermions sit-
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uated on a two-dimensional torus with side lengths equal
to Ly = 63 fm and L, = 21 fm. For the effective one-
body field we employ a simplified Skyrme interaction

p(z) p(z)\?
Ux) = A2 1 B <p—) , (6)
Po Po

with A = —100.3 MeV and B = 48 MeV. Moreover, pg
is the saturation density and p(z) is the average of the
density p(z,y) with respect to the transverse direction y
and folded in the z direction with a Gaussian of width
a = 0.87 fm. Since the effective field U then depends on
z only, the same holds for those modes that can be ex-
cited, and this simplifies the analysis considerably. The
folding simulates the finite range of the interaction, which
introduces a natural cutoff scale for the unstable modes.
In determining the parameters of U, we have sought to
mimic standard three-dimensional matter. Thus we have
required a Fermi momentum of Pr = 260 MeV/c, a bind-
ing energy of 16 MeV per nucleon, and that the den-
sity doubling lead to approximately zero binding (corre-
sponding to a compressibility modulus of K = 300 MeV
for a calculation in three dimensions). The in-medium
“cross section” was taken as 2.4 fm, corresponding to
an interaction radius of 1.2 fm. In the present ideal-
ized two-dimensional system, the saturation density is
po = 0.55 fm™2. In order to ensure that the system is
initially situated inside the spinodal region, we prepare
the system to have a uniform density equal to half the
normal density, p(z,y,t = 0) = %po, and to have a tem-
perature of T = 3 MeV. This physical scenario is similar
to what was considered in Ref. [9].

A. Lattice simulation

Recently a lattice simulation of the BL evolution was
developed [7-9]. In this method the stochastic part of
the collision number, §N(12;1'2") (see above), is simu-
lated directly on a lattice in phase space. The size of
the phase-space cells must be of the order h? in order to
simulate the extension of an elementary quantum state,
and we have used Az = 3 fm and Ap = 120 MeV/c. The
mean-field evolution is treated by means of a standard
matrix technique. However, in order to achieve sufficient
accuracy, a second finer grid is required and therefore
smaller cells having 6z = % fm and §p = 40 MeV/c are
employed. The transformations between these two scales
are described in Ref. [9]. We first focus on the evolution
of the spatial density of the system, which is displayed
in Fig. 1(a). Initially the system has a uniform density,
but soon the fluctuations break this translational symme-
try. Subsequently the fluctuations are rapidly amplified
by the action of the effective one-body field, thus leading
towards fragment formation. (Of course, real fragments
do not form, because the size of the torus is kept fixed so
the system cannot expand.)

It is instructive to perform a Fourier analysis of the
density for the considered system, p(z). Indeed, in the
present simplified scenario, the eigenmodes of the density
are plane waves, characterized by a wave number k. The
amplitude associated with a given k is given by
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where 6p(z) = p(z) — po represents the fluctuating part
of the density and L, is the size of the system in the
z direction. The Fourier transform p(k,t) pertains to a
particular dynamical history. In reality we consider an
entire ensemble of such evolutions (generated by running
the code many times) and it is therefore of interest to
consider the ensemble average

ok (t) = (le(k, t)I?)
=//da:d:v' e~ @) (5p(x,t) Sp(a’, t)) .
(8)

This quantity is also recognized as the Fourier trans-
form of the spatial correlation function o(z — z/) =
(6p(z,t) 6p(z’,1)) [6].

Invoking linear response theory, we expect that the
evolution of of is dominated by the associated unsta-
ble mode v, and so it should exhibit approximately the
behavior described by Eq. (4). In the present case, the
eigenmodes factorize, and so F,, (z,p) is a plane wave
with respect to the position z times a function of the
momentum p.

In Fig. 2(a) is shown the time evolution of o for the
fastest growing mode. We note that while o2 is close to
zero during the earliest time steps, the exponential in-
crease predicted by Eq. (4) is clearly observed at later
times. For large times t > tx, we then expect that
0% = Ditr exp(2t/ty) and we may then extract the key
quantities Dy and t; by simple extrapolation. This pro-
cedure gives D ~ 2 x 107* fm™3 and #; =~ 50 fm/c.
These values are in perfect agreement with those ob-
tained from Eq. (3) for Dy and the dispersion relation
(see Ref. [10]) for tg.

Finally, in Fig. 3(a) we show the fluctuation o2 as a
function of the wave number k. It can be seen that cer-

and the final Fourier spectrum is therefore dominated by
the most unstable modes.

B. Test-particle method

In order to test the possibility of replacing the stochas-
tic collision term by a simple noise, we solve the BUU
equation with the test-particle method, using a collisional
procedure based on the concept of nucleon mean free path
[11]. Since each nucleon is represented as a collection of
N test particles, the stochasticity of the collision inte-
gral is reduced correspondingly by the factor 1/N [8,
12]. Therefore, since NV is always finite, the test-particle
method retains some degree of fluctuation in the dynam-
ics. Moreover, this finite sampling of the phase-space
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FIG. 2. Growth of the fluctuations. The time evolution of

the Fourier transform of the correlation function, o2, for the
most unstable mode (which has node number K = kL; /27 =
6), for the BL lattice calculation (a) and the BUU test-particle
simulation with three different values of A/, the number of
test-particles per nucleon (b). This quantity is the variance
of fluctuations having wave number equal to k.
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density introduces some fluctuations in the initial condi-
tions. When the spinodal region of the nuclear matter
phase diagram is not explored, small fluctuations of the
distribution function are not important because they are
not amplified (but destroyed), and consequently a good
description of the mean dynamics is obtained with the
test-particle method [2]. By contrast, when the system
is unstable, all kinds of perturbations of the density f
may be important, since they are amplified, and there-
fore the numerics is no longer under control. This is what
we observe in Fig. 1(b) where the initial noise is ampli-
fied and leads towards clusterization. In this situation
our idea is to carefully adjust the numerical fluctuations
(i.e., the number of test particles, ) so as to simulate
the physical fluctuations, which are well accounted in the
lattice calculations (see Ref. [8] for a detailed discussion).

Since the perturbation of the density introduced by
using a finite number of test particles is of statistical
nature, it may be calculated in a simple manner. Thus
the number of test particles, n, present in a volume V

fluctuates with a characteristic dispersion 02 = 7, where

i = pVN is the mean number of test particles in V,
which is fixed by the specified value of the initial density.
Consequently the relative fluctuation of the density p is

op/p=1/Vi or

ol = =,
Pa V2N

The corresponding Fourier coefficient (8) is then inde-

pendent of k,

z P
N

2 #_ _n (©)

of = (10)

Qh|b<

Thus the numerical noise o} scales as 1/A/, and so it is
possible to choose the number of test particles, A, so
as to reproduce the required magnitude of the physical
source term Dy, for a particular value of the wave number
k. Indeed, since in the BL lattice calculation we have
02(0) = 0, it follows from Eq. (4) that asymptotically

(i.e., for t > ti) the magnitude of the fluctuations is
determined by Dyty, whereas it is given by Dyt /N +
02(0) in the BUU test-particle simulation. Therefore,
the matching of those two asymptotic evolutions yields
the condition

(W — 1) Dyt = NO’%(O) = %p R (11)
Yy

which determines the number of test particles, A/. Insert-
ing the values determined above for Dy and tj, together
with L, L, and p, we find N = 83 for the fastest mode
(the main uncertainty coming from the relatively inaccu-
rate determination of the diffusion coefficient Dy).

We have then performed BUU calculations using a
range of values for N and compared the results with the
corresponding lattice calculation. The time evolution of
the fastest mode is shown in Fig. 2, in addition to the
corresponding BL result. The results are seen to bear
out our expectation that the time evolutions follow the
form given in Eq. (4). Moreover, we observe that the
lattice calculation is indeed well reproduced by the BUU
simulation when the value N = 90 is employed, which is
in excellent agreement with the above result N ~ 83.

Figure 1(b) shows the evolution of one particular den-
sity distribution (calculated with the optimal value N =
90), and it is seen that the density irregularities quickly
attain the same magnitude as those of the lattice calcu-
lation.

In Fig. 3 we show the quantity o as a function of
the wave number k for different times. We observe that
not only are the time evolutions nearly the same, when
comparing the BL lattice calculation and the BUU test-
particle method, but also the spectral shapes of the fluc-
tuations are remarkably similar. This feature is very im-
portant for the viability of the method. The similarity of
the spectral shapes arises from the fact that the product
Dyt depends only relatively weakly on k, in the neigh-
borhood of the fastest mode, so that the spectral profile
depends primarily on the amplification times tx, which
are the same in the two treatments.
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IV. DISCUSSION

We have shown that when one is interested in the dy-
namics of very unstable systems the specific character of
the fluctuations may not play a decisive role in the catas-
trophic evolution, provided the overall magnitude of the
fluctuations is suitably adjusted. This is because the var-
ious unstable modes, once they have been agitated, are
amplified exponentially, so that the most unstable ones
will tend to quickly dominate. In the present context, the
magnitude of the imposed noise is set by the numerical
parameter N, the number of test particles per nucleon,
which is determined by the relation (11). In the ideal-
ized two-dimensional case considered here, this number
is around N/ =~ 90. We are presently in the process of
determining the value pertaining to three dimensions.

It should be noted that the source term Dj depends
on the phase-space density f(r,p). For example, at rel-
atively moderate excitations it is proportional to the
square of the temperature. Consequently, the optimal
value of NV, as given by Eq. (11), will depend on the pro-
cess considered and should therefore be carefully adjusted
for the particular scenario under study. This feature is
particularly relevant in connection with the very recent
calculations showing various exotic structures in central
symmetric collisions [13-17], since these geometries de-
pend sensitively on the time scale for the cluster forma-
tion, and hence the results will depend qualitatively on
the particular value of N employed.

We wish to emphasize that in general the identification
of an optimal value of N cannot be made as easily as in
the idealized test scenario considered here. Typically, the
system is undergoing a continual expansion and cooling
(and it is not uniform), and the unstable modes then ex-
hibit a more complicated dynamics. In a rough approach,
one might use the method employed here to determine a
range of N values, corresponding to the range of den-
sity and temperature the bulk of the expanding system
is passing through. The corresponding set of simulations
would then serve to provide bounds on the outcome of a
full Boltzmann-Langevin simulation. This would already
be an important advance, since no other criterion for de-
termining a physically reasonable range of A values has
been formulated as of yet.

Moreover, it must be noted that fluctuations are im-
portant neither before the system becomes unstable,
since they are not amplified at this stage, nor after
the fluctuations have grown to macroscopic size, because
then their further development is dominated by the expo-
nential amplification by the effective field. Therefore, the
important physical conditions are those prevailing during
a relatively brief time window of the order of ¢; after the
system has entered the unstable region. By studying the
physical properties of the system during the collision and
extracting the shortest amplification constant, it would
be possible to determine that time window and to ap-
proximately match the numerical noise to the physical
fluctuations over this time window, provided the physical
conditions are not changing too rapidly over this period.

We wish to conclude these cautionary remarks by
stressing that the method is approximate by its nature
and that its utility lies more in providing a bound on the
physical outcome than in making specific quantitative
predictions, when the dynamical scenario is as compli-
cated as in a typical nuclear collision.

Notwithstanding the above qualifications, the advan-
tage of the proposed approximated test-particle method
is that it makes practically possible to perform mean-
ingful three-dimensional simulations of nuclear collisions,
a task that is presently beyond feasibility for the exact
Boltzmann-Langevin model.

Finally, it should be mentioned that the two-body col-
lision integral is not the only source of fluctuations in
nuclear dynamics. This fact is perhaps most evident
at lower energies where the Pauli blocking renders the
collision integral ineffectual, and in fact the fluctuations
observed for damped reactions have been largely under-
stood as associated with the random character of the
individual nucleon transfers [18]. A suggestion is to in-
troduce a fluctuation in the effective field, 6 H, which can
be done already at the level of the Vlasov equation [19].
Hopefully, by confronting careful calculations based on
well-controlled approximations with experimental data,
it will ultimately be possible to ascertain the relative im-
portance of the various possible mechanisms.
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